

## ISEG – Lisbon School of Economics and Management ECONOMETRICS First Semester 2017/2018 Problem Set III



| Question: | 1 | 2 | 3 | 4  | Total |
|-----------|---|---|---|----|-------|
| Points:   | 4 | 4 | 4 | 38 | 50    |

**Justify** all your answers (except for multiple choice questions). You are required to show your work on each problem (except for multiple choice questions) and to include the output of EVIEWS used to solve the empirical questions. **Organize your work**. Work scattered all over the page will receive very little credit. A correct answer in a multiple choice question worths 4 points; an incorrect one worths -1 point. **Delivery date: 30th of November**.

(4) **1**. Suppose the model  $y = \beta_0 + \beta_1 x_1 + u$  where  $Var(u|x_1 = \sigma^2 x_1^2)$  and  $E(u|x_1) = 0$ . Suppose also the models:

$$y/x_1 = \alpha_0 \times 1/x_1 + \alpha_1 + u/x_1$$

$$y/x_1^2 = \gamma_0 \times 1/x_1^2 + \gamma_1 + u/x_1^2$$

Which of the following statements is **TRUE**?

 $\bigcirc$  The OLS estimator of  $\beta_0$  and  $\beta_1$  is BLUE.

 $\sqrt{}$  The OLS estimator of  $\alpha_0$  and  $\alpha_1$  is BLUE.

- $\bigcirc$  The OLS estimator of  $\gamma_0$  and  $\gamma_1$  is BLUE.
- $\bigcirc$  None of the above.
- (4) 2. Suppose the model  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$ . Consider that  $\hat{u}$  and  $\hat{y}$  are the residuals and the fitted values for y obtained from estimating that model by OLS, respectively. Then the equation,
  - $\bigcirc u^2 = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 + v \text{ is used to perform the test of Breusch Pagan.}$  $\bigcirc \hat{u} = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 + v \text{ is used to test for heteroscedasticity.}$  $\bigcirc u^2 = \gamma_0 + \gamma_1 \hat{y} + \gamma_2 \hat{y}^2 + v \text{ is used to perform the RESET test.}$  $\checkmark \hat{u}^2 = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_1^2 + \gamma_3 x_1 x_2 + \gamma_4 x_2 + \gamma_5 x_2^2 + v \text{ is used to perform the test of White.}$

- (4) **3**. Choose the option that is FALSE. Suppose Assumptions MLR.1 to MLR.4 are valid. Then, the estimator of White for the standard errors in a multiple linear regression model,
  - $\bigcirc\,$  gives valid estimates with homoscedasticity and heteroscedasticity.
  - $\bigcirc\,$  should be used when there is evidence of heteroscedasticity.
  - $\sqrt{}$  gives valid estimates only for heteroscedasticity of the White type.
  - used in the t-statistic gives a statistic that is approximately normally distributed.
  - 4. Use the data set  $\underline{\text{mroz.WF1}}$  to explain the numbers of hours a woman has worked in a given year.

Estimate the following regression by OLS:

 $hours_i = \beta_0 + \beta_1 educ_i + \beta_2 age_i + \beta_3 log(faminc_i) + \beta_4 kidslt6 + u_i$ 

where:

- *hours* is the number of hours worked;
- *educ* is number of years in schooling;
- *age* is the woman's age in years;
- *faminc* is the family income;
- *kidslt6* is the number of kids with age less than 6 in the woman's household.
- (5) (a) Write the estimated equation with the corresponding standard errors.

|                             | Method: Least Squares<br>Sample: 1 753<br>Included observations:                                                                 | 753                                                                               |                                                                                               |                                                                 |                                                                      |                       |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|-----------------------|
|                             | Variable                                                                                                                         | Coefficient                                                                       | Std. Error                                                                                    | t-Statistic                                                     | Prob.                                                                |                       |
|                             | C<br>EDUC<br>AGE<br>LOG(FAMINC)<br>KIDSLT6                                                                                       | -1511.456<br>20.62875<br>-17.40978<br>287.5780<br>-478.7833                       | 604.5454<br>14.44602<br>4.159897<br>63.32095<br>63.98363                                      | -2.500153<br>1.427989<br>-4.185147<br>4.541593<br>-7.482903     | 0.0126<br>0.1537<br>0.0000<br>0.0000<br>0.0000                       |                       |
|                             | R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.108832<br>0.104066<br>824.7320<br>5.09E+08<br>-6122.391<br>22.83686<br>0.000000 | Mean depend<br>S.D. depende<br>Akaike info cr<br>Schwarz crite<br>Hannan-Quir<br>Durbin-Watso | dent var<br>ent var<br>iterion<br>rion<br>on criter.<br>on stat | 740.5764<br>871.3142<br>16.27461<br>16.30532<br>16.28644<br>1.131273 |                       |
| $\widehat{hours} = -1511.4$ | 6 + 20.63  educ                                                                                                                  | — 17.41 c                                                                         | age + 28                                                                                      | 7.58 log                                                        | (famin                                                               | ac) - 478.78  kidslt6 |

**Solution:**  $\hat{\beta}_3$ : a raise of 1% in the family income will increase the estimated number of hours a woman works in an year by  $\frac{287.58}{100} = 2.8758$ , ceteris paribus. All the signs of the estimates seem to make sense:

- A woman with more education probably has a more fulfilling job and doesn't mind working more hours;
- An older woman may feel less disposition to work several hours;
- A woman that receives more money may feel more motivated to work more (we are keeping all other factors constant);
- A woman with small kids may work less to spend more time with her children, who demand more attention.

(5) (c) Test for heteroscedasticity using the Breusch-Pagan test and conclude.

**Solution:** In all heteroscedasticity tests, the null hypothesis is the ausence of heteroscedastic errors.

In the Breusch-Pagan test, we have to perform the auxiliar regression:

$$\hat{u}^2 = \beta_0 + \beta_1 educ + \beta_2 age + \beta_3 \log(faminc) + \beta_4 kidslt6 + v$$

Where  $\hat{u}^2$  are the residuals of our original model.

H0: 
$$Var(u_i \mid X_i) = \sigma^2 vs$$

H1:
$$Var(u \mid X_i) = \gamma_0 + \gamma_1 educ + \gamma_2 age + \gamma_3 log(faminc) + \gamma_4 kidslt6$$

The null hypothesis can then be stated as:

H0': 
$$\gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 = 0$$

The test-statistic is

$$LM = nR_{\hat{u}^2}^2 \xrightarrow{d} \chi^2(k)$$

Alternatively, we can perform the F-test for overall significance of the regression on squared residuals:

$$F = \frac{R_{\hat{u}^2}^2/k}{(1 - R_{\hat{u}^2}^2)/(n - k - 1)} \sim F(k, n - k - 1)$$

| Dependent Variable: Ri<br>Method: Least Squares                                                                                  | ESID^2                                                                            |                                                                                               |                                                                 |                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| Sample: 1 753<br>Included observations:                                                                                          | 753                                                                               |                                                                                               |                                                                 |                                                                      |
| Variable                                                                                                                         | Coefficient                                                                       | Std. Error                                                                                    | t-Statistic                                                     | Prob.                                                                |
| C<br>EDUC<br>AGE<br>LOG(FAMINC)<br>KIDSLT6                                                                                       | -1502351.<br>-6172.435<br>-1309.733<br>236964.8<br>-173621.8                      | 813826.7<br>19446.94<br>5599.969<br>85241.37<br>86133.46                                      | -1.846033<br>-0.317399<br>-0.233882<br>2.779927<br>-2.015729    | 0.0653<br>0.7510<br>0.8151<br>0.0056<br>0.0442                       |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.018295<br>0.013046<br>1110237.<br>9.22E+14<br>-11547.78<br>3.484982<br>0.007858 | Mean depend<br>S.D. depende<br>Akaike info cr<br>Schwarz crite<br>Hannan-Quir<br>Durbin-Watse | dent var<br>ent var<br>iterion<br>rion<br>in criter.<br>on stat | 675666.3<br>1117551.<br>30.68466<br>30.71537<br>30.69649<br>2.053571 |

For this situation,  $nR_{\hat{u}^2}^2 = 753 \times 0.018295 = 13.776135$ 

Considering  $\alpha = 5\%$ , the critical value for a chi-squared distribution with 4 degrees of freedom is 9.49: thus, we reject the null hypothesis, finding evidence that the errors are heteroscedastic.

Alternatively, we could use the F-statistic in the output of the regression which is equal to 3.48 with p-value 0.008. The same conclusion applies.

We may also make use of Eviews (View/Residual Diagnostics/Heteroskedasticity Tests) to get the result directly.

| Heteroskedasticity Tes                                            | t: Breusch-Pag       | an-Godfrey                    |             |          |
|-------------------------------------------------------------------|----------------------|-------------------------------|-------------|----------|
| F-statistic<br>Obs*R-squared                                      | 3.484982<br>13.77637 | Prob. F(4,748<br>Prob. Chi-Sq | 0.0079      |          |
| Scaled explained SS                                               | 18.56996             | Prob. Chi-Sq                  | uare(4)     | 0.0010   |
| Test Equation:<br>Dependent Variable: Ri<br>Method: Least Squares | ESID^2               |                               |             |          |
| Sample: 1 753<br>Included observations:                           | 753                  |                               |             |          |
| Variable                                                          | Coefficient          | Std. Error                    | t-Statistic | Prob.    |
| С                                                                 | -1502351.            | 813826.7                      | -1.846033   | 0.0653   |
| EDUC                                                              | -6172.435            | 19446.94                      | -0.317399   | 0.7510   |
| AGE                                                               | -1309.733            | 5599.969                      | -0.233882   | 0.8151   |
| LOG(FAMINC)                                                       | 236964.8             | 85241.37                      | 2.779927    | 0.0056   |
| KIDSLT6                                                           | -173621.8            | 86133.46                      | -2.015729   | 0.0442   |
| R-squared                                                         | 0.018295             | Mean dependent var            |             | 675666.3 |
| Adjusted R-squared                                                | 0.013046             | S.D. depende                  | ent var     | 1117551. |
| S.E. of regression                                                | 1110237.             | Akaike info cr                | iterion     | 30.68466 |
| Sum squared resid                                                 | 9.22E+14             | Schwarz crite                 | rion        | 30.71537 |
| Log likelihood                                                    | -11547.78            | Hannan-Quin                   | in criter.  | 30.69649 |
| F-statistic                                                       | 3.484982             | Durbin-Wats                   | on stat     | 2.053571 |
| Prob(E-statistic)                                                 | 0.007858             |                               |             |          |

Using the first or the second line in the output, we get immediately that the p-value is smaller than 5%, reaching the same conclusion.

(5) (d) Test for heteroscedasticity using the White test and conclude.

## Solution:

The White test, like the Breusch-Pagan, uses an auxiliar regression with the squared

residuals, adding also the squares of the variables and their interactions:

$$\begin{split} \hat{u}^2 &= \gamma_0 + \gamma_1 \, educ + \gamma_2 \, age + \gamma_3 \log(faminc) + \gamma_4 \, kidslt6 + \gamma_5 \, educ^2 + \gamma_6 \, age^2 \\ &+ \gamma_7 \log(faminc)^2 + \gamma_8 \, kidslt6^2 + \gamma_9 \, educ \times age + \gamma_{10} \, educ \times \log(faminc) \\ &+ \gamma_{11} \, educ \times kidslt6 + \gamma_{12} \, age \times \log(faminc) + \gamma_{13} \, age \times kidslt6 \\ &+ \gamma_{14} \log(faminc) \times kidslt6 + v \end{split}$$

| Dependent Variable: RESID^2 |
|-----------------------------|
| Method: Least Squares       |
|                             |

| Sample: 1 753<br>Included observations: 7                                                                                                                                 | 53                                                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Variable                                                                                                                                                                  | Coefficient                                                                                                                                                                | Std. Error                                                                                                                                                                       | t-Statistic                                                                                                                                                                            | Prob.                                                                                                                                    |
| C<br>EDUC<br>AGE<br>LOG(FAMINC)<br>KIDSLT6<br>EDUC*2<br>AGE*2<br>LOG(FAMINC)*2<br>KIDSLT6*2<br>EDUC*AGE<br>EDUC*AGE<br>EDUC*LOG(FAMINC)<br>AGE*LOG(FAMINC)<br>AGE*KIDSLT6 | -6262557.<br>-55472.80<br>-106822.3<br>1802846.<br>-3114703.<br>-4971.026<br>510.3236<br>-86372.66<br>28169.13<br>3619.592<br>817.9793<br>37855.17<br>1615.044<br>17406.58 | 9443544.<br>374702.1<br>129133.5<br>1667635.<br>1699909.<br>5891.239<br>724.0256<br>89357.36<br>117404.4<br>2797.332<br>40444.41<br>41068.38<br>12749.78<br>18386.86<br>154420.5 | -0.663158<br>-0.148045<br>-0.827223<br>1.081079<br>-1.832277<br>-0.843800<br>0.704842<br>-0.966598<br>0.239932<br>1.293944<br>0.020225<br>0.921760<br>0.126672<br>0.946686<br>1.100947 | 0.5074<br>0.8823<br>0.4084<br>0.2800<br>0.0673<br>0.3991<br>0.4811<br>0.3341<br>0.8104<br>0.9839<br>0.3570<br>0.8992<br>0.3541<br>0.2674 |
| LOG(FAMINC)*KIDSL16                                                                                                                                                       | 0.020229                                                                                                                                                                   | 164430.5                                                                                                                                                                         | 1.109947                                                                                                                                                                               | 0.2674                                                                                                                                   |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic)                                          | 0.029328<br>0.010915<br>1111435.<br>9.12E+14<br>-11543.52<br>1.592737<br>0.075665                                                                                          | Mean depend<br>S.D. depende<br>Akaike info cr<br>Schwarz crite<br>Hannan-Quin<br>Durbin-Watso                                                                                    | ient var<br>ent var<br>iterion<br>rion<br>in criter.<br>on stat                                                                                                                        | 675666.3<br>1117551.<br>30.69992<br>30.79203<br>30.73541<br>2.032834                                                                     |

H0: 
$$Var(u_i \mid X_i) = \sigma^2$$
 vs H1: not H0

The test-statistic is

$$LM = nR_{\hat{u}^2}^2 \stackrel{d}{\to} \chi^2(q)$$

Or:

$$F = \frac{R_{\hat{u}^2}^2/q}{(1 - R_{\hat{u}^2}^2)/(n - k - 1)} \sim F(q, n - k - 1)$$

In this case,  $nR_{\hat{u}^2}^2 = 753 \times 0.029328 = 22.0842$ 

The critical value for a chi-squared distribution with 14 degrees of freedom is 23.7  $(\alpha = 5\%)$  - we fail to reject the null hypothesis, concluding that there is evidence in favour of heteroscedastic errors when using the White Test.

Alternatively, more simple, the F-statistic is 1.59 with p-value 0.076 therefore we fail to reject  $H_0$  at 5% leading to the same conclusion.

Using Eviews (View/Residual Diagnostics/Heteroskedasticity Tests): Heteroskedasticity Test White

| F-statistic         | 1.592737 | Prob. F(14,738)      | 0.0757 |
|---------------------|----------|----------------------|--------|
| Obs*R-squared       | 22.08426 | Prob. Chi-Square(14) | 0.0769 |
| Scaled explained SS | 29.76864 | Prob. Chi-Square(14) | 0.0082 |

The conclusion is exactly the same.

(6) (e) Test for heteroscedasticity using the Simplified White test and conclude.

**Solution:** The Simplified White Test is used to conserve a small number of degrees of freedom. It is based on a regression that uses the fitted values of our dependent variable:

$$\hat{u}^2 = \alpha_0 + \alpha_1 \widehat{hours} + \alpha_2 \widehat{hours}^2 + v$$

H0: 
$$Var(u_i \mid X_i) = \sigma^2$$
 vs H1: not H0

Dependent Variable: RESID^2 Method: Least Squares

Sample: 1753 Included observations: 753

| Variable                                                                                                                         | Coefficient                                                                       | Std. Error                                                                                    | t-Statistic                                                    | Prob.                                                                |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|
| C<br>HOURSFIT<br>HOURSFIT <sup>^</sup> 2                                                                                         | 204758.8<br>1024.879<br>-0.456590                                                 | 144645.8<br>417.9801<br>0.316528                                                              | 1.415587<br>2.451980<br>-1.442496                              | 0.1573<br>0.0144<br>0.1496                                           |
| R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic) | 0.016556<br>0.013933<br>1109738.<br>9.24E+14<br>-11548.44<br>6.312894<br>0.001911 | Mean depend<br>S.D. depende<br>Akaike info cr<br>Schwarz crite<br>Hannan-Quin<br>Durbin-Watso | lent var<br>ent var<br>iterion<br>rion<br>n criter.<br>on stat | 675666.3<br>1117551.<br>30.68112<br>30.69954<br>30.68822<br>2.050011 |

The test-statistic is, once again,

$$LM = nR_{\hat{u}^2}^2 \xrightarrow{d} \chi^2(2)$$

Or:

$$F = \frac{R_{\hat{u}^2}^2/2}{(1 - R_{\hat{u}^2}^2)/(n - k - 1)} \sim F(2, n - k - 1)$$

For this test,  $nR_{\hat{u}^2}^2 = 753 \times 0.016556 = 12.4667$ 

The critical value for a chi-squared distribution with 2 degrees of freedom is 5.99  $(\alpha = 5\%)$  - we reject the null hypothesis, concluding that there is statistical evidence in favour of heteroscedastic errors.

Alternatively, more simple, the F-statistic is 6.31 with p-value 0.002 therefore we reject  $H_0$  leading to the same conclusion.

(5) (f) Estimate the model using the White estimator for the standard errors.

|                          | Sample: 1 753<br>Included observations: 7<br>White-Hinkley (HC1) het<br>covariance                                                                                              | 753<br>teroskedastici                                                                                                                                                                             | ty consistent st                                                                                              | andard errors                                                                                                                                            | and                                            |                  |    |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------|----|
|                          | Variable                                                                                                                                                                        | Coefficient                                                                                                                                                                                       | Std. Error                                                                                                    | t-Statistic                                                                                                                                              | Prob.                                          |                  |    |
|                          | C<br>EDUC<br>AGE<br>LOG(FAMINC)<br>KIDSLT6                                                                                                                                      | -1511.456<br>20.62875<br>-17.40978<br>287.5780<br>-478.7833                                                                                                                                       | 541.6069<br>13.59506<br>4.313860<br>55.81193<br>57.12056                                                      | -2.790688<br>1.517372<br>-4.035778<br>5.152626<br>-8.381978                                                                                              | 0.0054<br>0.1296<br>0.0001<br>0.0000<br>0.0000 |                  |    |
|                          | R-squared<br>Adjusted R-squared<br>S.E. of regression<br>Sum squared resid<br>Log likelihood<br>F-statistic<br>Prob(F-statistic)<br>Prob(F-statistic)<br>Prob(Wald F-statistic) | quared 0.108832   Jsted R-squared 0.104066   .of regression 824.7320   n squared resid 5.09E+08   likelihood -6122.391   atistic 22.83686   b(F-statistic) 0.00000   b(Wald E-statistic) 0.000000 | Mean depend<br>S.D. depende<br>Akaike info cr<br>Schwarz crite<br>Hannan-Quin<br>Durbin-Wats<br>Wald F-statis | Mean dependent var<br>S.D. dependent var<br>Akaike info criterion<br>Schwarz criterion<br>Hannan-Quinn criter.<br>Durbin-Watson stat<br>Wald F-statistic |                                                |                  |    |
| $\widehat{hours} = -151$ | 1.46 + 20.63  educ -                                                                                                                                                            | 17.41 a                                                                                                                                                                                           | ae + 287                                                                                                      | .58 log(                                                                                                                                                 | famino                                         | (x) - 478.78  ki | ds |

(7) (g) Given the results you obtained discuss the properties of the estimations in (a) and in (f).

**Solution:** Since there is evidence of heteroscedasticity with the first and third tests (and H0 in the White Test is not very far from being rejected), and supposing MRL.1 to MRL.4 apply, we should not use the usual standard errors computed in (a): all our inference (t-tests, F-tests, etc) will be invalid. Still, the OLS estimator for  $\beta$  is unbiased and consistent, even if it is not BLUE anymore.

Using OLS with White standard errors, as done in (f), allows us to perform correct inference, even if the distributions are only valid asymptotically.